Finite volume method for solving the stochastic Helmholtz equation
نویسندگان
چکیده
منابع مشابه
A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملA New Method for Solving the Modified Helmholtz Equation
In this paper, the Cauchy problem for the modified Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a new regularization method to solve it based on the solution given by the method of separation of variables. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effec...
متن کاملTailored Finite Cell Method for Solving Helmholtz Equation in Layered Heterogeneous Medium
In this paper, we propose a tailored finite cell method for the computation of twodimensional Helmholtz equation in layered heterogeneous medium. The idea underlying the method is to construct a numerical scheme based on a local approximation of the solution to Helmholtz equation. This provides a computational tool of achieving high accuracy with coarse mesh even for large wave number (high fre...
متن کاملFinite Element and Discontinuous Galerkin Method for Stochastic Helmholtz Equation in Two- and Three-dimensions
Many physical and engineering phenomena are modeled by partial differential equations which often contain some levels of uncertainty. The advantage of modeling using these so-called stochastic partial differential equations (SPDEs) is that SPDEs are able to more fully capture the behavior of interesting phenomena; it also means that the corresponding numerical analysis of the model will require...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2019
ISSN: 1687-1847
DOI: 10.1186/s13662-019-2011-x